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Abstract OBJECTIVES: Urocortins (Ucns), members of corticotropin releasing factor 
family, play critical roles in a number of pathological and physiological conditions. 
Many proteins have been reported to participate in Ucns signaling pathways, 
which formed complex interaction networks. 
METHODS: STITCH (‘search tool for interactions of chemicals’) is an interaction 
network database that provides exploration of the known and predicted interac-
tions among large sets of chemicals and proteins. 
RESULTS: In this study, using STITCH, interaction networks of Ucns were con-
structed by database mining, and then their topological parameters and important 
nodes were analyzed by network related tools. This may help a quick and thorough 
overview of the Ucns mechanisms underlying in a visual format. 
 

INTRODUCTION
Urocortins (Ucns), peptides that belong to the 
corticotropin-releasing factor (CRF, also known 
as the corticotropin-releasing hormone, CRH) 
family found in bony fish, amphibians, birds, and 
mammals, have unique phylogenies, pharma-
cologies, and tissue distributions (Fekete & Zor-
rilla 2007; Garg & Frishman 2013). The 3 types 
of UCNs (1, 2, and 3) may be clinically relevant 
molecules in the pathogenesis, treatment or man-
agement of many conditions, including congestive 
heart failure, hypertension, inflammatory disorder 
(irritable bowel syndrome, active gastritis, and 
rheumatoid arthritis), atopic/allergic disorders 
(dermatitis, urticaria, and asthma), gastroparesis, 
pregnancy and parturition, major depression, and 
obesity (Fekete & Zorrilla 2007). The past decade 
witnessed an increasing knowledge on the periph-
eral expression and regulation of CRF and uro-
cortin signaling systems and recognition of their 
implication in health and disease (Stengel & Tache 
2014). But how to convert information from mas-

sive data sets into insight is still a critical challenge 
(Shneiderman 2014). 

Biological network integration, visualiza-
tion and analysis is a powerful approach to gain 
systems-level understanding of patterns of gene 
expression and protein-protein interaction in 
different cell types, disease states and other bio-
logical/experimental conditions (Furlong 2013; 
Kwoh & Ng 2007; Xia et al. 2014). For example, 
networks for adipoenctin associated target based 
proteins had been constructed and their topologi-
cal properties were analyzed (Chen 2013). It was 
used for analysis of mRNA expression profile of 
Ezrin knockdown in Esophageal squamous cell 
carcinoma (Wu et al. 2014b). Biological networks 
have been developed as a platform for integrating 
information from high- to low-throughput experi-
ments for analysis of biological systems (Kwoh & 
Ng 2007). Therefore, it will be a powerful tool to 
gain a systematic view of Ucns.

In this study, the Ucns interaction networks 
were constructed by database mining. Further-
more, these networks’ properties were analyzed by 
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computational tools. The purpose of this study was to 
facilitate a system-level understanding of Ucns interac-
tions in a visual pattern.

MATERIALS AND METHODS 
Network construction via STITICH
STITCH (available at http://stitch.embl.de) is a database 
of protein-chemical interactions that integrates sources 
of experimental and manually curated evidence with 
text-mining information and interaction predictions 
(Kuhn et al. 2008; Kuhn et al. 2010; Kuhn et al. 2012; 
Kuhn et al. 2014a). The resulting interaction network 
includes 390 000 chemicals and 3.6 million proteins 
from 1133 organisms (Kuhn et al. 2014a). Recently, in a 
study, functional chemical-protein association analysis 
was performed to retrieve multi-target drugs of high 
pathway wideness from the STITCH 3.1 database (Xu et 
al. 2014). In a research on psoriasis, SITITCH was used 
for chemical-protein interaction network construc-
tion (Manczinger & Kemeny 2013). Moreover, query-
ing STITCH for a protein will provide the user with a 
network that places the protein into its chemical and 
biological context (Kuhn et al. 2014a; Kuhn et al. 2012; 
Kuhn et al. 2010; Kuhn et al. 2008).

CRH, Urocortin1, Urocortin2, Urocortin3 (Homo 
sapiens) was entered into the STITCH 4.0 search panel 
respectively. The medium confidence of the required 
confidence (score) was set to 0.400. The maximum 
number of interactions was set to 500. The other param-
eters were kept as default values. Then, the constructed 
networks were exported. 

Topological parameters analyzed by NetworkAnalyzer
Cytoscape is an established free open-source software 
platform for the visualization and analysis of molecu-
lar interaction networks (Shannon et al. 2003; Saito et 
al. 2012). It can be extended through plugins, enabling 
a broad community of scientists to contribute useful 
features (Saito et al. 2012). NetworkAnalyzer plugin is 
installed in Cytoscape by default and computers and 
displays a comprehensive set of topological parameters 
such as the number of nodes, edges, and connected 
components, the network diameters, radius, density, 
centralization, heterogeneity and so on (Saito et al. 
2012; Assenov et al. 2008). The plugin was used in a 
protein-protein interaction network in coronary artery 
disease (Nair et al. 2014), and in a research on esopha-
geal squamous cell carcinoma (Wu et al. 2014a).

The networks obtained in the previous step were 
imported into NetworkAnalyzer and treated as undi-
rected. The other parameters were set to default values.

Important nodes identified by STITCH
STITCH assigns a confidence score for each chemi-
cal–protein and chemical–chemical interaction (Li et 
al. 2013; Kuhn et al. 2010; Kuhn et al. 2012; Kuhn et al. 
2014b; Kuhn et al. 2008). For this analysis, CRH, Uro-

Fig. 1. Ucns interaction networks constructed by STITCH: (A) 
Ucn1; (B) Ucn2; (C) Ucn3. Nodes: specific proteins or chemical 
compounds; edges: interactions. Red spheres in the central: 
Ucns; spheres of other: interacting proteins; oblong shapes: 
chemicals. Protein-protein interaction: blue lines; chemical-
protein interaction: green lines. Stronger associations are 
represented by thicker lines. 

a

b

c
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cortin1, Urocortin2, and Urocortin3 (Homo sapiens) 
were entered into the STITCH search panel individually, 
and the parameter settings were set as described above.

RESULTS
Network constructed by STITCH 4.0
The interaction networks of Ucns were constructed and 
downloaded from STITCH 4.0 by database mining on 
May 26, 2014. As shown in Figure 1 (Ucn1, 1a; Ucn2, 
1b; Ucn3, 1c), the Ucn1 network has 49 nodes (pro-
teins or chemical compound) and 239 edges (interac-
tions), the Ucn2 network is made up of 30 nodes and 
132 edges, and Ucn3 consists of 16 nodes and 65 edges 
(Table 1). Meanwhile, the CRH network has 281 nodes 
and 9174 edges (supplementary Table 1).

Topological parameters analyzed by NetworkAnalyzer
As shown in Figure 2 and listed in Table 1, the topologi-
cal properties of the Ucns networks are accessible. The 
degree distributions, average clustering coefficients, 
topological coefficients, and characteristic path lengths 
are visualized in Figure 2. Other parameters such as 
network diameters, average number of neighbors, net-
work density, clustering coefficient, and so forth, are 
also shown in Table 2.

Top 10 nodes identified by STITCH
According to their confidence scores, STITCH 4.0 
identified the 10 top nodes in each network (Table 2). 
The top 2 nodes in all three networks are corticotropin 
releasing hormone receptor (CRHR1) and CRHR2.

Tab. 1. Detailed topological parameters of Ucns networks analyzed 
by NetworkAnalyzer.

Parameter UCN1 UCN2 UCN3

Number of nodes 49 30 16

Number of edges 239 132 65

Characteristic path length 1.836 1.697 1.458

Network diameter 3 2 2

Avg. number of neighbors 9.510 8.8 8.125

Network density 0.198 0.303 0.542

Clustering coefficient 0.614 0.730 0.855

Network heterogeneity 0.853 0.623 0.464

a

b

c

Fig. 2. Schematic diagram of topological parameters for Ucns networks, showing the number/degree of nodes, the average clustering 
coefficient/number of neighbors, the topology coefficient/number of neighbors, and the frequency/path length: (A) Ucn1; (B) Ucn2; (C) 
Ucn3.

Tab. 2. The 10 top nodes in each Ucns network according to the 
confidence scores by STITCH.

Rank UCN1 UCN2 UCN3

1 CRHR2 CRHR2 CRHR2

2 CRHR1 CRHR1 CRHR1

3 CRH ENSG00000226460 UCN2

4 FOS Astressin 2B ENSG00000226460

5 astressin FOS CRF-41

6 corticosterone UCN3 UCN

7 ENSG00000226460 Antalarmin CRH

8 CTF1 Dexamethasone RANBP3

9 IL6 Erythromycin Parathion

10 KCNJ8 I-NAME fonofos
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DISCUSSION
The biological system is a complex physicochemical 
system consisting of numerous dynamic networks 
of biochemical reactions and signaling interaction 
between cellular components, which makes it virtu-
ally unanalyzable by traditional methods (Kwoh & 
Ng 2007). Therefore, construction and analysis of 
biological networks is vital for successful quantitative 
modeling of biological systems (Kwoh & Ng 2007). 
Shown in Figure 1, the interaction network will help 
us a system-level understanding of complex biological 
activities of Ucns. 

Global network properties are determined to assess 
the overall characteristics of the network such as how 
they are formed, what model they fit, how robust 
they are, and how tightly the elements are connected 
(Altaf-Ul-Amin et al. 2014). No typical nodes existing 
in all three Ucns networks (Figure 1) and the degree 
distribution decreasing according to a power law 
(Figure 2) mean that these networks are scale-free. 
These results are consistent with the “universal laws” 
that cellular networks are scale-free (Lima-Mendez & 
van Helden 2009; Barabasi & Oltvai 2004). Another 
topological property, the characteristic path length 
means the expected distance between two connected 
nodes and the network diameter is the largest distance 
between two nodes, and the average number of neigh-
bors means the mean number of connection of each 
node (Bernabo et al. 2013; Barabasi & Oltvai 2004; 
Chen 2013). As shown in Table 1, the Ucn1 network 
has the longest characteristic path length, the largest 
network diameter, and the highest average number of 
neighbors, while Ucn3 networks is in another oppo-
site end. Network density indicates how densely the 
network is populated with edges (Chen 2013). The 
value in Ucn3 is 0.542, much higher than those in both 
ucn1 and ucn2 networks. The average clustering coef-
ficient is the average of the clustering coefficients for 
all the proteins that form clusters in the network(Chen 
2013). The value in Ucn1 network is 0.614, much lower 
than those of the other two networks, meaning a large 
number of protein interactions. These parameters are 
shown in Figure 2 and listed in Table 1. These prop-
erties will contribute to a systematic understanding of 
Ucns networks.

Highly connected hub nodes, central to the network 
architecture, have been found to play important roles 
in many networks (Langfelder et al. 2013). As listed in 
Table 2, top 10 nodes in each network were identified. 
As we known, in addition to CRF, CRF system includes 
the three Urocortin peptide (Ucn1, Ucn2 and Ucn3), 
two receptors type (CRFR1 and CRFR2) and CRF-bind-
ing protein (Ryabinin et al. 2012; Pan & Kastin 2008). 
Ucns bind and activate the CRFR2 with high affinity, 
Ucn1 has equal affinities for both receptors; and Ucn2 
and 3 appear to be selective for CRFR2 (Ryabinin et al. 
2012). As expected, in all three networks, both CRFR1 

and CRFR2 are the most important nodes respectively 
(Table 2). Other elements in CRF system, CRFR1 pre-
cursor (ENSG00000226460), astressin, dexametha-
sone, antalarmin also play important roles in the three 
networks (Table 2). Notably, Fos has important effects 
in Ucn 1 and Ucn 2 networks (Table 2). The immedi-
ate early gene product Fos is part of the activator pro-
tein-1 (AP-1) transcription factor and has been shown 
to participate in molecular mechanisms of cell prolif-
eration, differentiation, apoptosis, and transformation 
(Durchdewald et al. 2009). Ucn 1- induced increase of 
c-fos mRNA levels in the caudal brain stem containing 
the nucleus of the solitary tract was inhibited by CRF2 
antagonists (Yakabi et al. 2011). Injections of Ucn1 into 
the basolateral amygdala induce anxiety-like and c-Fos 
expression in brainstem serotonergic neurons (Spiga et 
al. 2006). Ucn 2 increases c-Fos expression in seroto-
nergic neurons projecting to the ventricular/periven-
tricular system (Hale et al. 2010), in topographically 
organized subpopulations of serotonergic neurons in 
the rat dorsal raphe nucleus (Staub et al. 2005). All 
these suggest that Fos play critical roles in the Ucns 
networks. 

In addition, CRH is the first discovered and the most 
widely studies peptide in CRH family (Vale et al, 1981), 
it’s network is more huge and complex than the three 
Ucns networks, and can’t provide a quick and concise 
view (supplementary figure 1). So, comparison with 
UCN networks will be meaningless. But the topological 
parameters (supplementary table 1) and the top func-
tional partners (supplementary table 2) will also pro-
vide some important information to understand the 
CRH functions.

CONCLUSION
Biology has recently become a “big-data science” mainly 
supported by the advances in experimental technolo-
gies (Altaf-Ul-Amin et al. 2014). Network construction 
and analysis facilitates the system-level understanding 
of the cell or cellular components and subprocesses 
(Altaf-Ul-Amin et al. 2014). In this article, Ucns inter-
action networks were constructed via database mining. 
And the topological parameters and hubs of these net-
works were analyzed by network-related tools. How-
ever, it is noteworthy that two deficiencies exist in this 
research. One is that all data were retrieved only from 
STITCH database, the other is that false-positive results 
may come from data mining. Nevertheless, this study 
offered a systematic overview of Ucns interaction net-
works in a compact and visually manner.
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Supplementary Fig. 1. The confidence view of CRH network. Note: spheres shapes: proteins; oblong shapes: chemicals; protein-protein 
interaction are shown in blue, chemical-protein interaction in green and interactions between chemicals in red.

Supplementary Tab. 1. Detailed topological parameters of CRH 
network analyzed by NetworkAnalyzer.

Parameter CRH

Number of nodes 281

Number of edges 9174

Characteristic path length 1.818

Network diameter 4

Avg. number of neighbors 62.235

Network density 0.222

Clustering coefficient 0.658

Network heterogeneity 0.708

Supplementary Tab. 2. The top 10 predicted functional partners in 
CRH network.

Rank CRH

1 CRHR1

2 POMC

3 CRHR2

4 ENSG00000226460

5 norepinephrine

6 ADCYAP1

7 MC4R

8 serotonin

9 PGE2

10 histamine


