Caco-2 cell monolayer integrity and effect of probiotic *Escherichia coli* Nissle 1917 components

Vera Stetinová¹, Libuse Smetanova¹, Jaroslav Kvetina¹, Zbynek Svoboda¹, Zdenek Zidek², Helena Tlaskalova-Hogenova³

- 1 Institute of Experimental Biopharmaceutics, Joint Research Centre of PRO.MED.CS Praha a.s and the Academy of Science of the Czech Republic, Czech Republic
- 2 Institute of Experimental Medicine, v.v.i., Academy of Sciences of the Czech Republic, Czech Republic
- 3 Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Czech Republic

Correspondence to:	MUDr. Věra Štětinová, CSc.
	Institute of Experimental Biopharmaceutics,
	Joint Research Centre of PRO.MED.CS Praha a.s. and the Academy of Science of
	the Czech Republic
	Heyrovského 1207, Hradec Králové, 500 03, Czech Republic.
	теl: +420-495 514 771; ғах: +420- 495 512 719; е-маіl: Stetinova@uebf.cas.cz

Submitted: 2010-09-15 Accepted: 2010-11-12 Published online: 2010-12-28

Key words: probiotics; lipopolysaccharide (LPS); Caco-2 cells

Neuroendocrinol Lett 2010; 31(Suppl.2):51–56 PMID: 21187838 NEL31S210A08 © 2010 Neuroendocrinology Letters • www.nel.edu

Abstract **OBJECTIVES:** Different probiotic strains used in clinical trials have shown prophylactic properties in different inflammatory diseases of the gastrointestinal tract. This study was aimed to investigate the influence of *Escherichia coli* strain Nissle 1917 (EcN) components on the integrity of the Caco-2 cell monolayer (human adenocarcinoma cell line). **METHODS:** The effect of supernatant of EcN suspension and lipopolysaccharide (LPS) isolated from EcN (in concentrations from 0.001 to 1000 µg/ml) on paracellular transport of ¹⁴C-mannitol marker through epithelial cell monolayer was estimated. **RESULTS:** Both LPS and EcN supernatant exerted almost the same effect; whereas no effect was shown using high concentrations (100 and $1000 \,\mu g/ml$), low concentrations (0.001, 0.1 and $1 \mu g/ml$) significantly decreased permeability of ¹⁴C-mannitol. Concentration (0.001 µg/ml) decreased ¹⁴C-mannitol permeability approximately about 20% (LPS) and 30% (EcN supernatant). To elucidate the observed changes in monolayer permeability ("tighter monolayer") induced by concentrations of LPS or supernatant, media able to open epithelial intercellular junctions were used. The effects of Ca²⁺-free transport medium and of medium containing 5, 10, 20, 50, and 100% of Ca^{2+} on the ¹⁴C-mannitol transport in the presence of the lowest (0.001 μ g/ml) and high (100 µg/ml) concentrations of LPS were studied. Using Ca²⁺-free medium both concentrations of LPS significantly decreased apparent permeability coefficient (Papp) of ¹⁴C-mannitol indicating that changes of ¹⁴C-mannitol permeability are independent of dimensions of paracellular spaces. **CONCLUSION:** The decrease of ¹⁴C-mannitol permeability caused by EcN LPS indicates the ability of components of probiotic EcN strain to restore disrupted epithelial barrier. To cite this article: Neuroendocrinol Lett 2010; 31(Suppl.2):51–56

Abbreviations:

ECACC HBSS	- European Collection of Cell Cultures - Hanks´ balanced salt solution
P _{app} LPS	- apparent permeability coefficient (cm/s)
LPS	 bacterial lipopolysaccharide
EcN	- probiotic Escherichia coli strain Nissle 1917 O6:K5:H1

INTRODUCTION

Probiotics are defined as live microorganisms which when administered in adequate amount confer a healthy benefit on the host. The mechanisms by which probiotics exert beneficial effects include immmunomodulatory effects and enhancement of intestinal barrier function. It is widely accepted that tight junctions (components of epithelial junction complexes) are altered during infections by attaching and effacing pathogens (Britton & Versalovic 2008; Guttman et al. 2006 a,b). Increase of intestinal permeability resulting from loss of tight junction formation and disruption of epitehalial barrier function could lead to translocation of commensal bacteria or their components. This effect may contribute to pathological consequences and development of inflammatory gastrointestinal and systemic diseases (Tlaskalová-Hogenová et al. 2004). The role of increased epithelial permeability in various diseases has been described in vitro and in vivo (Madsen et al. 2001; Welcker et al. 2004; Guttman et al. 2006 a, b). It was suggested that prevention and treatment with probiotic bacteria may prevent or reverse increased permeability of the intestinal epithelium (Schultz et al. 2004).

Commensal-derived probiotic bacteria have been implicated as therapy for a range of digestive symptoms or diseases such as diarrhoea, inflammatory bowel disease, bacterial gastritis, amelioration of the side effects of antibiotic therapy, and prevention of atopic disease (Schultz *et al.* 2004, Kokešová *et al.* 2006, Britton & Versalovic 2008). Non-pathogenic *Escherichia coli* strain Nissle 1917 O6:K5:H1 (EcN) has evolved into one of the best characterized probiotics, and its therapeutic efficacy and safety have been proven (Schultz *et al.* 2004, Ukena *et al.* 2007). However, the exact mechanisms by which EcN mediates its effects are not fully understood.

Before studying the interaction of probiotics with transepithelial transport of xenobiotics, this preworkstudy was done to evaluate the effect of probiotics on the integrity of the Caco-2 cell monolayer (an *in vitro* model of human intestinal absorption) because intestinal epithelium has been proved to be rate-limiting for the absorption of orally administered drug. The permeability is one factor determining oral absorption and bioavailability of drugs. Due to the risk of live bacteria multiplications in the cell culture medium followed by its effect on medium pH and nutrient availability (Gratz *et al.* 2007), the EcN component, the bacterial lipopolysaccharide (LPS), a glycolipid of the cell wall of gramnegative bacteria, was used (Böcker *et al.* 2003). To differentiate the potential effects caused by LPS alone or by other factors released by EcN suspension into supernatant in the present study we compared the effects of LPS with the effects of EcN cell free supernatant on epithelial monolayer integrity.

MATERIAL AND METHODS

Materials

All chemicals were purchased from Sigma-Aldrich (Praha, Czech Republic), materials for cell culture were obtained from PAA Laboratories (BioTech, Praha, Czech Republic) or Gibco Invitrogen (KRD, Praha, Czech Republic) and ¹⁴C-mannitol (100μ Ci/ml) from Moravek Radiochemical and Biochemicals (MGP Zlín, Czech Republic). Lipopolysaccharide (LPS) isolated by phenol extraction from the *Escherichia coli* Nissle 1917 O6:K5:H1 and EcN-supernatant were prepared at the Institute of Microbiology, Czech Academy of Sciences.

Caco-2 cells

Caco-2 cells (ECACC) were cultured in a standard manner (Bourdet and Thakker 2006) at 37 °C in an atmosphere of 5% CO₂ and 90% relative humidity. For transport studies, Caco-2 cells (passages 68–79) were seeded onto the Transwell inserts at the density of 2.5×10^5 cells/cm² and grown to late confluence (21–24 days).

Cell viability assay

Cell viability was determined by Trypan blue exclusion method (Smetanova *et al.* 2009). 24 h after seeding Caco-2 cells onto Petri dishes $(2 \times 10^5 \text{ cells/cm}^2)$, LPS 100 µg/ml and 1000 µg/ml or transport medium (control) was added and incubated for next 2 h. Then the cells were released and incubated with 0.4% Trypan blue for 5 min and counted by using microscopy.

Monolayer integrity assessment

Before the start of the experiment, the monolayer integrity was checked by $500 \,\mu$ mol/l phenol red permeability/1 h (Smetanova *et al.* 2008). During the transport studies, the integrity was confirmed simultaneously by ¹⁴C-mannitol (0.5 μ Ci/ml) permeability (Artursson *et al.* 1996).

Effect of LPS or EcN supernatant on ¹⁴C-mannitol transport

¹⁴C-mannitol transport (marker of paracellular transport and indicator of monolayer integrity) was studied. The prepared Caco-2 cell inserts were rinsed twice and equilibrated with prewarm HBSS at 37 °C for 30 min before the transport studies.¹⁴C-mannitol alone or ¹⁴C-mannitol plus LPS (0.001, 0.1, 1, 100, 1000 µg/ml) or plus supernatant (0.001, 0.1, 1, 50 µg LPS/ml) were added to the apical compartment (diluted in HBSS transport medium) and the radioactive samples from

the basolateral compartment were withdrawn at 30, 60, 90 and 120 min for measurement radioactivity using liquid scintillation counter (Beckman Instruments).

LPS pretreatment

To investigate LPS effect on cell junctions, the LPS $(0.001 \,\mu\text{g/m}, 100 \,\mu\text{g/m})$ were incubated for 2 hours in apical compartment. After Caco-2 cells washing the transport of ¹⁴C-manitol was evaluated.

Induction of "leaky Caco-2 monolayer" and LPS effect

The effect of Ca²⁺-free transport medium (opening cell junctions) and of medium containing 5, 10, 20, 50, and 100% of Ca²⁺ (100% = standard concentration of Ca²⁺ in HBSS transport medium) on the ¹⁴C-mannitol transport were analyzed. The effects of low (0.001 µg/ml) and high (100 µg/ml) concentration of LPS on ¹⁴C-mannitol transport was studied using transport medium with 100% of Ca²⁺ or Ca²⁺-free transport medium.

Data analysis (calculation of the Papp)

In all transport studies, the following equation was used to calculate the apparent permeability coefficient $P_{app} = (dQ/dt) \times (1/A \times C_0)$, (cm/s) (Artursson & Karlsson 1991): where dQ/dt is the permeability rate, the amount of drug appearing in the receiver compartment in function of time (nmol/s), C_0 is the initial concentration in the donor chamber (nmol/ml), and A is the surface area of the monolayer (cm²).

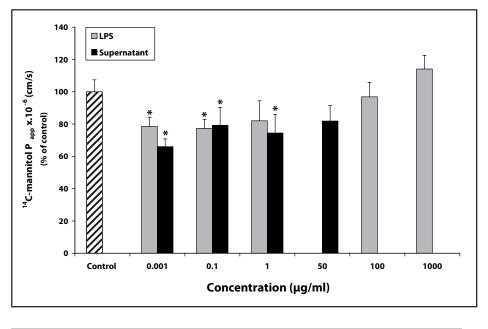
Statistical analysis

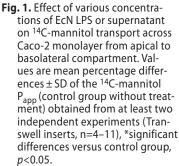
All values are represented as mean \pm standard deviation (SD). All treatments were carried out at least in two independent experiments (Transwell inserts, n=3–17). Statistical differences were determined using Kruskal-Wallis one way analysis of variance (ANOVA) followed

by Bonferroni's (with control) multiple-comparison test as post hoc analysis or a Student's *t*-test for group comparison of parametric data. The differences were considered significant when p<0.05.

RESULTS

Cell viability assay


LPS 100 μ g/ml and 1000 μ g/ml did not influence Caco-2 cell viability in comparison with viability of Caco-2 cells incubated with transport medium without LPS (97.9% and 98.4% vs. 98.0%, not significant).


Effect of LPS or supernatant on ¹⁴C-mannitol transport

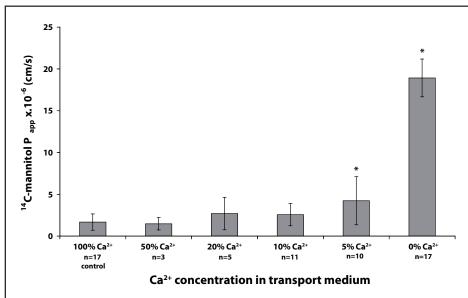
As the results were obtained from several tested plates, the each value of $P_{app}s$ was expressed as percent of control value of ¹⁴C-mannitol of pertinent plate (the mean ¹⁴C-mannitol P_{app} was 1.50 ± 0.20 cm/s, n=10). Result (Figure 1) showed that highest concentration of LPS (1000 µg/ml) non-significantly increased the transport of ¹⁴C-mannitol (by 14%), the concentrations of 100 µg/ ml LPS did not change the ¹⁴C-mannitol transport, while decreasing concentrations lowered permeability of ¹⁴C-mannitol significantly (the lowest concentration 0.001 µg/ml approximately about 20%). Supernatant exerted almost the same effect as LPS, the lowest concentration (0.001 µg LPS/ml) decreased ¹⁴C-mannitol permeability by 33%.

LPS pretreatment

No changes in P_{app} of ¹⁴C-mannitol after 2-hour preincubation of the Caco-2 monolayer with transport medium (control group without treatment) or with LPS in a concentration of 0.001 (100.5% of control value) and 100 µg/ml (97.6% of control value) indicated no disruption of cell junctions of the Caco-2 monolayers.

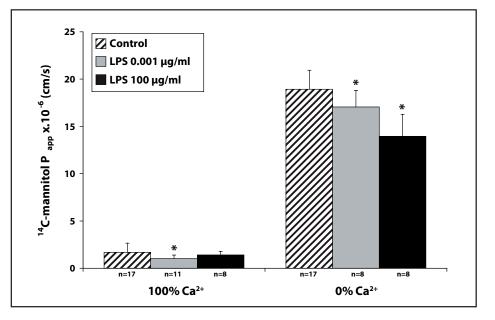
Neuroendocrinology Letters Vol. 31 Suppl. 2 2010 • Article available online: http://node.nel.edu

Induction of "leaky Caco-2 monolayer" and LPS effect


Presence of 50, 20 and 10% of Ca²⁺ of the standard concentration of Ca²⁺ (100% Ca²⁺) in HBSS transport medium had no effect on ¹⁴C-mannitol permeability (Figure 2). However, the presence of only 5% of Ca²⁺ significantly increased ¹⁴C-mannitol permeability. Ca²⁺-free transport medium enormously increased ¹⁴C-mannitol permeability; from 1.5 ± 0.20 cm/s to 18.96 ± 2.26 cm/s.

Only low concentration of LPS $(0.001 \,\mu\text{g/ml})$ decreased significantly transport of ¹⁴C-mannitol when standard medium (100% Ca²⁺) was used. Using Ca²⁺-free transport medium ¹⁴C-mannitol transport was significantly decreased in presence of both low (0.001 μ g/ml) and high (100 μ g/ml) concentration of LPS (Figure 3) suggesting protective effect of LPS.

DISCUSSION


The beneficial effect of probiotic administration acquires attention in clinical practice and for this reason it is important to know possible mechanisms of interaction of probiotics with other prescribed drugs. To focus on absorption process the effect of LPS (a key component of the outer membrane of gram-negative bacteria) or supernatant of EcN suspension on Caco-2 cell monolayer (*in vitro* model of human intestinal absorption) was studied.

There are different mechanisms by which probiotics can modulate the epithelial barrier. We concentrated on evaluation of effect of EcN components on Caco-2 monolayer integrity. The obtained results showed that LPS had no effect on Caco-2 cells viability even at the

Fig. 2. Changes in permeability of ¹⁴C-mannitol from apical to basolateral compartment across Caco-2 cell monolayer in presence of various concentrations of Ca²⁺ ions in transport medium. Results are reported as mean \pm SD of ¹⁴C-mannitol P_{app} from at least two independent experiments, *significant differences versus control group, p<0.05.

Fig. 3. ¹⁴C-mannitol permeability from apical to basolateral compartment in absence or presence of Ca²⁺ ions in transport medium (control groups) and effects of EcN LPS (0.001 and 100 µg/ml) on the ¹⁴C-mannitol permeability. Each column represents the mean \pm SD of the ¹⁴C-mannitol P_{app} from at least two independent experiments, *significant differences versus control group, *p*<0.05.

Copyright © 2010 Neuroendocrinology Letters ISSN 0172-780X • www.nel.edu

highest dose (1000 µg/ml), which indicate non toxic effect of LPS on integrity of Caco-2 cells. Similarly, LPS in the high doses (100 and 1000 µg/ml) exerted no effect on ¹⁴C-mannitol permeability, a marker of paracellular transport, i.e. on monolayer integrity. On the other hand low doses of LPS or supernatant repeatedly decreased ¹⁴C-mannitol transport. Interestingly, it seems that in contrast to EcN LPS, lipopolysaccharides from other bacterial sources increase permeability and cause mucosal damage (Fang *et al.* 2010, Hietbrink *et al.* 2009).

To elucidate the observed decreased permeability of the monolayer ("tighter monolayer") induced by lower concentrations of LPS or supernatant we attempted to analyze this effect by pretreatment of Caco-2 monolayer by LPS for 2 h. Results induced assumption that LPS had no altering effect on cell junctions because no effect on monolayer resistance measured by ¹⁴C-mannitol transport was found. Then we attempted to prepare monolayers with different resistance (differently "leaky monolayer") using transport medium with different Ca2+ concentrations. Ca2+ ions are indispensable for formation of some types of cell junctions (cell-cell adhesions in adherens junctions and desmosomes are mediated by transmembrane proteins cadherins, proteins responsible for Ca2+-dependent interactions -homophilic binding- of adjacent cells (Lodish 2008)). Evaluation of the dose-effect relationship (percent of Ca²⁺ in transport medium in relation to P_{app} of ¹⁴C-mannitol (tightness of the monolayer) showed no significant difference of ¹⁴C-manitol permeability using the transport medium with 100-10% of Ca²⁺ ions. However, there was steep increase in P_{app} of mannitol in Ca²⁺-free medium versus P_{app} of mannitol in medium containing 5% of Ca²⁺. Ca²⁺-free medium increased P_{app} more than 10 times and value of SD (standard deviation) indicated uniform reaction, whereas SD of 68% in the case of 5% Ca²⁺ in transport medium (Papp increased only 2.5 times) signalized nonuniform answer.

As obvious "leaky monolayer" was induced only by Ca²⁺-free medium, further research was centred on effect of probiotics in "leaky monolayer" using this Ca2+-free medium. While results with the standard concentration of Ca²⁺ in transport medium showed significant decrease of ¹⁴C-mannitol permeability only in the dose of $0.001 \,\mu\text{g/ml}$ of LPS, in the case of use of Ca²⁺-free medium, both used doses of LPS (0.001µg/ ml and 100 µg/ml) significantly decreased ¹⁴C-mannitol permeability which indicated that these changes of ¹⁴C-mannitol permeability were independent of actual tightness of paracellular spaces. We can state that this finding of increased monolayer resistance is in an agreement with hypothesis that probiotics are able, among others, to induce restoration of a disrupted epithelial barrier (Schultz 2004) as was described by Zyrek *et al.* (2007) using T_{84} and Caco-2 monolayers. In their work, disruption of these monolayers induced by enteropathogenic E. coli was restored by co-incubation

with EcN for 120 min as monitored by transepithelial resistance. They suggested possible explanation that this was caused via silencing of protein kinase (whose activation is involved in dysregulation of tight junction permeability) and by redistribution of zonula occludens-2, tight junction-associated proteins, that appear to organise the transmembrane proteins and actin microfilamens (Anderson 2001). However, the participation of nitric oxide and cytokines in observed effects cannot be excluded (Zídek *et al.* 2010).

CONCLUSION

Even the highest dose of LPS ($1000 \mu g/ml$) did not show any effect on viability of cultivated Caco-2 cells. Both, LPS and supernatant of EcN caused similar effects on ¹⁴C-mannitol permeability indicating that except LPS no other factors present in supernatant are responsible for decreasing the ¹⁴C-mannitol permeability. The estimated decrease of ¹⁴C-mannitol permeability (independent of tightness of paracellular spaces) suggested that increased monolayer integrity was induced by probiotic components.

ACKNOWLEDGEMENTS

The study was supported by the research projects No. 305/08/0535 of the Czech Science Foundation, and IGA NS 9775-4 (Ministery of Health of Czech Republic) and IAA500200910 (Academy of Science). The authors wish to thank Mrs. Hana Machova for her skilful technical assistance.

REFERENCES

- 1 Artursson P, Karlsson J (1991). Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Comm. **175:** 880–885.
- 2 Artursson P, Karlsson J, Ocklind G, Schipper N (1996). Studying transport process in absorptive epithelia. In: Shaw AJ, editor. Epithelial cell culture – a practical approach, Oxford University Press, p. 111–133.
- 3 Anderson JM (2001). Molecular structure of tight junctions and their role in epithelial transport. News Physiol. Sci. **30**: 126–130.
- 4 Böcker U, Yezerskyy O, Feick P, Manigold T, Panja A, Kalina U, *et al.* (2003). Responsiveness of intestinal epithelial cell lines to lipopolysaccharide is correlated with Toll-like receptor 4 but not Toll-like receptor 2 or CD14 expression. Int J Colorectal Dis. **18**: 25–32.
- 5 Bourdet DL, Thakker DR (2006). Saturable absorptive transport of the hydrophilic organic cation ranitidine in Caco-2 cells: role of pH-dependent organic cation uptake system and P-glycoprotein. Pharm Res. **23**: 1165–1177.
- 6 Britton RA, Versalovic J (2008). Probiotics and gastrointestinal infections. Interdiscip Perspect Infect Dis. **2008**: 1–10.
- 7 Fang HW, Fang SB, Chiang Chiau JS, Yeung CY, Chan WT, Jiang CB, Cheng ML, Lee HC (2010). Inhibitory effects of *Lactobacillus casei* subs. *rhamnosus* on *Salmonella* lipopolysaccharide-induced inflammation and epithelial barrier dysfunction in a co-culture model using Caco2-/peripheral blood mononuclear cells. J Med Microbiol **59**: 573–579.

- 8 Gratz S, Wu Qk, El-Nezami H, Juvonen RO, Mykkänen H, Turner PC (2007). *Lactobacillus rhamnosus* strain GG reduces aflatoxin B₁ transport, metabolism, and toxicity in Caco-2 cells. Appl. Environ. Microbiol. **73**: 3958–3964.
- 9 Guttman JA, Li Y, Wickham ME, Deng W, Vogl AW, Finlay BB (2006a). Attaching and effacing pathogen-induced tight junction disruption *in vivo*. Cell microbiol. 8: 634–645.
- 10 Guttman JA, Samji FN, Li Y, Vogl AW, Finlay BB (2006b). Evidence that tight junctions are disrupted due to intimate bacterial contact and not inflammation during attaching and effacing pathogen infection in vivo. Infection and Immunity. **74**: 6075–6084.
- 11 Hietbrink F, Besselink MG, Renooij W, de Smet MB, Draisma A, van der Hoeven H, Pickkers P (2009). Systemic inflammation increases intestinal permeability during experimental human endotoxemia. Shock **32**: 374–378.
- 12 Kokesova A, Frolova L., Kverka M, Sokol D, Rossmann P (2006). Oral administration of probiotic bacteria (*E. coli* Nissle, *E. coli* O83, *Lactobacillus casei*) influence the severity of dextran sodium sulfate-induces colitis in Balb/c mice. Folia Microbiol. **51**, 478–484.
- 13 Lodish H, Berk, A, Kaiser, CHA, Krieger, M, Scott, MP, Bretschrt A et. al, (2008), Integrating cells into tissues. In: Ahr, K eds., Molecular cell biology. 6th eds. W.H. Freeman and Company: New York, p. 801–819.
- 14 Madsen K, Cornish A, Soper P, McKaigney C, Jijon H, Yachimec CH, *et al.* (2001). Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterolgy. **121**: 580–591.
- 15 Schultz M, Strauch UG, Linde HJ, Watzl S, Obermeier F, Göttl C, et al. (2004). Preventive effects of *Escherichia coli* strain Nissle 1917 on acute and chronic intestinal inflammation in two different murine models of colitis. Clin Diagn Lab Immunol. **11**: 372–378

- 16 Smetanova L, Stetinova V, Kvetina J, Svoboda Z (2008). The use of ¹⁴C- mannitol and phenol red in the assessment of the Caco-2 monolayer integrity. Prague Medical Report **109** (Suppl.): S109–111.
- 17 Smetanova L, Stetinova V, Kholova D, Kvetina J, Smetana J, Svoboda Z (2009). Caco-2 cells and Biopharmaceutics classification system (BCS) for prediction of transepithelial transport of xenobiotics (model drug: caffeine). Neuroendocrinol Lett. **30** (Suppl 1): 101–105.
- 18 Tlaskalova-Hogenova H, Stepankova R, Hudcovic T, Tucková L, Cukrowska B, Lodinová-Zadníkova R, Kozáková H, Rossmann P, Bártová J, Sokol D, Funda D, Borovská D, Reháková Z, Sinkora J, Hofman J, Drastich P, Kokesová A (2004). Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett **93**: 97–108.
- 19 Ukena SN, Singh A, Dringenberg U, Engelhardt R, Seidler U, Hansen W, *et al.* (2007). Probiotic *Escherichia coli* Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. Clin Diagn Lab Immunol. **11**: 371–378.
- 20 Welcker K, Martin A, Kölle P, Siebeck M, Gross M (2004). Increased intestinal permeability in patients with inflammatory bowel disease. Eur J Med Res. **9**: 456–460.
- 21 Zídek Z., Kmonícková E., Kostecká P., Tlaskalova-Hogenova H. (2010). Decisive role of lipopolysaccharide in activating nitric oxide and cytokine production by the probiotic *Escherichia coli* strain Nissle 1917. Folia Microbiol. **55**: 181–189.
- 22 Zyrek AA, Cichon CH, Helms S, Enders C, Sonnenborn U, Schmidt MA. (2007). Molecular mechanisms underlying the probiotic effects of *Escherichia coli* Niessle 1917 involve ZO-2 and PKCζ. redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol **9**: 804–816.